Search results

1 – 10 of over 1000
Article
Publication date: 23 September 2020

Ramachandran T., Surendarnath S. and Dharmalingam R.

Fixture layout design is concerned with immobilization of the workpiece (engine mount bracket) during machining such that the workpiece elastic deformation is reduced. The fixture…

Abstract

Purpose

Fixture layout design is concerned with immobilization of the workpiece (engine mount bracket) during machining such that the workpiece elastic deformation is reduced. The fixture holds the workpiece through the positioning of fixturing elements that causes the workpiece elastic deformation, in turn, leads to the form and dimensional errors and increased machining cost. The fixture layout has the major impact on the machining accuracy and is the function of the fixturing position. The position of the fixturing elements, key aspects, needed to be optimized to reduce the workpiece elastic deformation. The purpose of this study is to evaluate the optimized fixture layout for the machining of the engine mount bracket.

Design Methodology Approach

In this research work, using the finite element method (FEM), a model is developed in the MATLAB for the fixture-workpiece system so that the workpiece elastic deformation is determined. The artificial neural network (ANN) is used to develop an empirical model. The results of deformation obtained for different fixture layouts from FEM are used to train the ANN and finally the empirical model is developed. The model capable of predicting the deformation is embedded to the evolutionary optimization techniques, capable of finding local and global optima, to optimize the fixture layouts and to find the robust one.

Findings

For efficient optimization of the fixture layout parameters to obtain the least possible deformation, ant colony algorithm (ACA) and artificial bee colony algorithm (ABCA) are used and the results of deformation obtained from both the optimization techniques are compared for the best results.

Research Limitations Implications

A MATLAB-based FEM technique is able to provide solutions when the repeated modeling and simulations required i.e. modeling of fixture layouts (500 layouts) for every variation in the parameters requires individual modeling and simulation for the output requirement in any FEM-based software’s (ANSYS, ABACUS). This difficulty is reduced in this research. So that the MATLAB-based FEM modeling, simulation and optimization is carried out to determine the solutions for the optimized fixture layout to reach least deformation.

Practical Implications

Many a time the practicability of the machining/mechanical operations are difficult to perform costly and time-consuming when more number of experimentations are required. To sort out the difficulties the computer-based automated solution techniques are highly required. Such kind of research over this study is presented for the readers.

Originality Value

A MATLAB-based FEM modeling and simulation technique is used to obtain the fixture layout optimization. ANN-based empirical model is developed for the fixture layout deformation that creates a hypothesis for the fixture layout system. ACA and ABCA are used for optimizing the fixture layout parameters and are compared for the best algorithm suited for the fixture layout system.

Details

Engineering Computations, vol. 38 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Book part
Publication date: 4 August 2021

Jyoti Bawane

The role and performance of a teacher is central to the teaching and learning process in any educational system, but they are often misinterpreted in the context of educational…

Abstract

The role and performance of a teacher is central to the teaching and learning process in any educational system, but they are often misinterpreted in the context of educational monitoring and quality assurance. Although efforts to relate teacher quality to educational quality are rarely challenged, establishing linkages between teacher quality and student performance have proven to be complex and inconclusive. This holds true especially in the Indian context wherein teachers experience diverse working conditions that may make traditional measures of teacher quality seem impractical and speculative. Teacher roles and performance, apart from being subjected to contrasting realities in schooling systems, are influenced by cultural capital, systemic forces, and teacher education programs. This chapter attempts to unravel the complexities of an Indian school teacher and highlight some of the issues that teachers are likely to face and grapple within their work situations. Nevertheless, the role of a professional and humane teacher will stand paramount in building the future of India.

Details

Building Teacher Quality in India: Examining Policy Frameworks and Implementation Outcomes
Type: Book
ISBN: 978-1-80071-903-3

Keywords

Article
Publication date: 16 July 2021

Merve Albayrak and Cemil Ceylan

The aim of this research is to combine and synthesize the findings of previous studies search for the effects of eWom on purchase intention by meta-analysis.

2141

Abstract

Purpose

The aim of this research is to combine and synthesize the findings of previous studies search for the effects of eWom on purchase intention by meta-analysis.

Design/methodology/approach

The paper shows a meta-analysis process step by step. Within the scope of certain criteria, the studies in the Google Scholar and ITÜ library databases were eliminated and the results of the remaining 19 studies were analyzed in CMA (Comprehensive Meta-Analysis) program.

Findings

By conducting a meta-analysis of the research question, a common effect size was obtained from 19 studies. In addition, the effect size of 21 eWom (electronic word of mouth communication) factor on purchasing intention related to the 21 hypotheses defined in the study was obtained by means of meta-analysis separately.

Originality/value

With the increasing number of Internet users, the desire to share their comments and ideas on the Internet, and the increasing importance of electronic word of mouth communication in our lives, people's decisions have started to be affected by this situation. One of the decision-making movements is the purchase intention. Therefore, it is expected to see more researches on meta-analysis for the effect of eWom on purchase intention in the following years.

Details

Data Technologies and Applications, vol. 55 no. 5
Type: Research Article
ISSN: 2514-9288

Keywords

Book part
Publication date: 11 June 2021

Abbi M. Kedir and Joseph Baricako

This chapter examines the role firm specific and institutional variables (such as regulation and trust) in firms’ decision to register their economic activities with authorities…

Abstract

This chapter examines the role firm specific and institutional variables (such as regulation and trust) in firms’ decision to register their economic activities with authorities. Our empirical analysis is based on a large data set gathered from 40 African countries on more than 11,000 small, medium and large firms via the World Bank Enterprise Survey covering the period 2006–2014. This chapter is aimed at reinforcing the limited but a growing body of literature focussing on determinants of informal entrepreneurship using firm-level databases. The analysis of this study shows in institutional environments where there is trust in public institutions such as courts, firms are less likely to stay unregistered. Concerning firm specific variables young firms are found to be more likely to stay unregistered but there is a non-linear relationship between age and length of years spent unregistered. Firms with exporting strategy and in foreign ownership are less likely to stay longer unregistered. There are significant gains if policy-makers focus on building trust in institutions, fighting corruption, embarking on meaningful enforcement of rule of law principles, providing services without reliance on predatory tax policies, reducing firm transaction costs via improved licensing and technology-assisted registration systems.

Details

Enterprise and Economic Development in Africa
Type: Book
ISBN: 978-1-80071-323-9

Keywords

Article
Publication date: 19 March 2021

Najiyah Safwa Khashi'ie, Norihan M. Arifin, John H. Merkin, Rusya Iryanti Yahaya and Ioan Pop

The purpose of this paper is to numerically analyze the stagnation point flow of Cu-Al2O3/water hybrid nanofluid with mixed convection past a flat plate and circular cylinder.

Abstract

Purpose

The purpose of this paper is to numerically analyze the stagnation point flow of Cu-Al2O3/water hybrid nanofluid with mixed convection past a flat plate and circular cylinder.

Design/methodology/approach

The similarity equations that reduced from the boundary layer and energy equations are solved using the bvp4c solver. The duality of solutions is observed within the specific range of the control parameters, namely, mixed convection parameter λ, curvature parameter γ and nanoparticles volumetric concentration ϕ1 for alumina, while for copper ϕ2. The stability analysis is also designed to justify the particular solutions’ stability. Additionally, the idea to obtain the solution for large value of λ and γ is also presented in this paper.

Findings

Two solutions exist in opposing and assisting flows up to a critical value λc where λc lies in the opposing region. An upsurge of the curvature parameter tends to extend the critical value (delay the separation process), whilst increase the heat transfer performance of the working fluid. Meanwhile, the application of hybrid Cu-Al2O3/water nanofluid also can decelerate the separation of laminar boundary layer flow and produce higher heat transfer rate than the Cu–water nanofluid and pure water.

Originality/value

The results are new and original. This study benefits to the other researchers, specifically in the observation of the fluid flow characteristics and heat transfer rate of the hybrid nanofluid. Also, this paper features with the mathematical formulation for the solution with large values of λ and γ.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 July 2017

Khalid Mahmood, Muhammad Sajid, Nasir Ali and Tariq Javed

An attempt is made to study magnetohydrodynamic viscous fluid impinging orthogonally toward a stagnation point on a vertical surface lubricated with power law fluid. It has been…

Abstract

Purpose

An attempt is made to study magnetohydrodynamic viscous fluid impinging orthogonally toward a stagnation point on a vertical surface lubricated with power law fluid. It has been assumed that the surface temperature varies linearly with the distance from the stagnation point. The problem is governed by system of partial differential equations for both the base fluid and the lubricant. The continuity of velocity and shear stress is assumed at the interface layer between the base fluid and the lubricant. Dimensionless variables are introduced to transform original problem into ordinary differential equations. An implicit finite-difference scheme known as the Keller-Box method is implemented to obtain the numerical solutions. The influence of various important parameters is presented in the form of graphs and tables. The limiting cases for full and no-slip conditions are deduced from the present solutions. A comparison of the present results with the existing results in the special case validates the obtained numerical solutions. The purpose of this study is to see the behaviour of flow characteristics in the presence of lubrication.

Design/methodology/approach

The authors’ problem is governed by system of partial differential equations for both the base fluid and the lubricant. Dimensionless variables are introduced to transform original problem into ordinary differential equations. The obtained ordinary differential equation along with boundary conditions are highly nonlinear and coupled. An implicit finite-difference scheme known as the Keller-Box method is implemented to obtain the numerical solutions.

Findings

Some findings of this study are that the lubricant increases the velocity of the base fluid inside the boundary layer. In the case of full slip, the effects of viscosity are suppressed by the lubricant. The temperature of the base fluid decreases by increase in lubrication on the surface. By increasing the slip on the surface, the skin friction decreases and local Nusselt number increases, but the rate of increase or decrease is less in magnitude for the case of opposing flow. The similarity solutions only exist for n = 1/2. A non-similar solution is obtained for the other values of the power-law index n.

Originality/value

The study of flow phenomenon over a lubricated surface has important applications in machinery components such as fluid bearings and mechanical seals. Coating is another major application of lubrication including the preparation of thin films, printing, painting, etc. The authors hope that the current study will provide the roadmap for the future studies in this direction.

Details

Industrial Lubrication and Tribology, vol. 69 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 December 2019

Mohammad Ghalambaz, Natalia C. Roşca, Alin V. Roşca and Ioan Pop

This study aims to study the mixed convection flow and heat transfer of Al2O3-Cu/water hybrid nanofluid over a vertical plate. Governing equations for conservation of mass…

Abstract

Purpose

This study aims to study the mixed convection flow and heat transfer of Al2O3-Cu/water hybrid nanofluid over a vertical plate. Governing equations for conservation of mass, momentum and energy for the hybrid nanofluid over a vertical flat plate are introduced.

Design/methodology/approach

The similarity transformation approach is used to transform the set of partial differential equations into a set of non-dimensional ordinary differential equations. Finite-deference with collocation method is used to integrate the governing equations for the velocity and temperature profiles.

Findings

The results show that dual solutions exist for the case of opposing flow over the plate. Linear stability analysis was performed to identify a stable solution. The stability analysis shows that the lower branch of the solution is always unstable, while the upper branch of the solution is always stable. The results of boundary layer analysis are reported for the various volume fractions of composite nanoparticles and mixed convection parameter. The outcomes show that the composition of nanoparticles can notably influence the boundary layer flow and heat transfer profiles. It is also found that the trend of the variation of surface skin friction and heat transfer for each of the dual solution branches can be different. The critical values of the mixed convection parameter, λ, where the dual solution branches joint together, are also under the influence of the composition of hybrid nanoparticles. For instance, assuming a total volume fraction of 5 per cent for the mixture of Al2O3 and Cu nanoparticles, the critical value of mixing parameter of λ changes from −3.1940 to −3.2561 by changing the composition of nanofluids from Al2O3 (5 per cent) + Cu (0%) to Al2O3 (2.5%) + Cu (2.5 per cent).

Originality/value

The mixed convection stability analysis and heat transfer study of hybrid nanofluids for a stagnation-point boundary layer flow are addressed for the first time. The introduced hybrid nanofluid model and similarity solution are new and of interest in both mathematical and physical points of view.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 2022

Nurul Amira Zainal, Roslinda Nazar, Kohilavani Naganthran and Ioan Pop

According to the previous research, bioconvection has been recognized as an important mechanism in current engineering and environmental systems. For example, researchers exploit…

Abstract

Purpose

According to the previous research, bioconvection has been recognized as an important mechanism in current engineering and environmental systems. For example, researchers exploit this mechanism in modern green bioengineering to develop environmentally friendly fuels, fuel cells and photosynthetic microorganisms. This study aims to analyse how this type of convection affects the flow behaviour and heat transfer performance of mixed convection stagnation point flow in alumina-copper/water hybrid nanofluid. Also, the impact of a modified magnetic field on the boundary layer flow is considered.

Design/methodology/approach

By applying appropriate transformations, the multivariable differential equations are transformed into a specific sort of ordinary differential equations. Using the bvp4c procedure, the adjusted mathematical model is revealed. Once sufficient assumptions are provided, multiple solutions are able to be produced.

Findings

The skin friction coefficient is declined when the nanoparticle concentration is increased in the opposing flow. In contrast, the inclusion of aligned angles displays an upward trend in heat transfer performance. The presence of several solutions is established, which simply leads to a stability analysis, hence verifies the viability of the initial solution.

Originality/value

The current findings are unique and novel for the investigation of mixed bioconvection flow towards a vertical flat plate in a base fluid with the presence of hybrid nanoparticles.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 March 2018

Assunta Andreozzi

The purpose of this paper is to analyze the thermal and fluid dynamic behaviors of mixed convection in air because of the interaction between a buoyancy flow and a moving plate…

Abstract

Purpose

The purpose of this paper is to analyze the thermal and fluid dynamic behaviors of mixed convection in air because of the interaction between a buoyancy flow and a moving plate induced flow in a horizontal no parallel-plates channel to investigate the effects of the minimum channel spacing, wall heat flux, moving plate velocity and converging angle.

Design/methodology/approach

The horizontal channel is made up of an upper inclined plate heated at uniform wall heat flux and a lower adiabatic moving surface (belt). The belt moves from the minimum channel spacing section to the maximum channel spacing section at a constant velocity so that its effect interferes with the buoyancy effect. The numerical analysis is accomplished by means of the finite volume method, using the commercial code Fluent.

Findings

Results in terms of heated upper plate and moving lower plate temperatures and stream function fields are presented. The paper underlines the thermal and fluid dynamic differences when natural convection or mixed convection takes place, varying minimum channel spacing, wall heat flux, moving plate velocity and converging angle.

Research limitations/implications

The hypotheses on which the present analysis is based are two-dimensional, laminar and steady state flow and constant thermo physical properties with the Boussinesq approximation. The minimum distance between the upper heated plate of the channel and its lower adiabatic moving plate is 10 and 20 mm. The moving plate velocity varies in the range 0-1 m/s; the belt moves from the right reservoir to the left one. Three values of the uniform wall heat flux are considered, 30, 60 and 120 W/m2, whereas the inclination angle of the upper plate θ is 2° and 10°.

Practical implications

Mixed convection because of moving surfaces in channels is present in many industrial applications; examples of processes include continuous casting, extrusion of plastics and other polymeric materials, bonding, annealing and tempering, cooling and/or drying of paper and textiles, chemical catalytic reactors, nuclear waste repositories, petroleum reservoirs, composite materials manufacturing and many others. The investigated configuration is used in applications such as re-heating of billets in furnaces for hot rolling process, continuous extrusion of materials and chemical vapor deposition, and it could also be used in thermal control of electronic systems.

Originality/value

This paper evaluates the thermal and velocity fields to detect the maximum temperature location and the presence of fluid recirculation. The paper is useful to thermal designers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 2013

G. Manonmani, C. Vigneswaran, K. Chandrasekaran and T. Ramachandran

This study investigates the effect of ring and compact spun yarns such as Sussen Elite and Com4 spun yarn on the physical and comfort characteristics of single jersey, rib and…

Abstract

This study investigates the effect of ring and compact spun yarns such as Sussen Elite and Com4 spun yarn on the physical and comfort characteristics of single jersey, rib and plain interlock knitted fabrics. The physical characteristics such as fabric aerial density, tightness factor, spirality and pilling behaviour were studied and statistically analyzed using Multivariable ANOVA analysis. The comfort characteristics such as thermal insulation behaviour (TIV), water vapour permeability, wicking and air permeability were studied and reported. The test results showed that compact spun yarn knitted fabrics such as Sussen Elite and Com4 yarn fabrics demonstrated higher thermal insulation behaviour in all the knitted structures when compared to ring spun yarn knitted fabrics. The low stress mechanical characteristics such as shear and compressional behaviour of ring and compact spun yarn knitted fabrics were also reported.

Details

Research Journal of Textile and Apparel, vol. 17 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of over 1000